Path Planning using Neural A* Search
ICML2021We present Neural A*, a novel data-driven search method for path planning problems. Despite the recent increasing attention to data-driven path planning, machine learning approaches to search-based planning are still challenging due to the discrete nature of search algorithms. In this work, we reformulate a canonical A* search algorithm to be differentiable and couple it with a convolutional encoder to form an end-to-end trainable neural network planner. Neural A* solves a path planning problem by encoding a problem instance to a guidance map and then performing the differentiable A* search with the guidance map. By learning to match the search results with ground-truth paths provided by experts, Neural A* can produce a path consistent with the ground truth accurately and efficiently. Our extensive experiments confirmed that Neural A* outperformed state-of-the-art data-driven planners in terms of the search optimality and efficiency trade-off. Furthermore, Neural A* successfully predicted realistic human trajectories by directly performing search-based planning on natural image inputs.
We reformulate a canonical A* search algorithm to be differentiable as a module referred to as the differentiable A*, by combining a discretized activation technique with basic matrix operations. This module enables us to perform an A* search in the forward pass of a neural network and back-propagate losses through every search step to other trainable backbone modules.
As illustrated in the figure above, Neural A* consists of the combination of a fully-convolutional encoder and the differentiable A* module, and is trained as follows: (1) Given a problem instance (i.e., an environmental map annotated with start and goal points), the encoder transforms it into a scalar-valued map representation referred to as a guidance map; (2) The differentiable A* module then performs a search with the guidance map to output a search history and a resulting path; (3) The search history is compared against the ground-truth path of the input instance to derive a loss, which is back-propagated to train the encoder.
We conducted an extensive experiment to evaluate the effectiveness of Neural A* for point-to-point shortest path problems. By learning from optimal planners, Neural A* outperformed state-of-the-art data-driven search-based planners in terms of the trade-off between search optimality and efficiency.
We also address the task of planning paths directly on raw image inputs. Suppose a video of an outdoor scene taken by a stationary surveillance camera. Given planning demonstrations consisting of color images of the scene and actual trajectories of pedestrians, Neural A* can predict realistic trajectories consistent with those of pedestrians when start and goal locations are provided.
# ICML2021 version
@InProceedings{pmlr-v139-yonetani21a,
title = {Path Planning using Neural A* Search},
author = {Ryo Yonetani and
Tatsunori Taniai and
Mohammadamin Barekatain and
Mai Nishimura and
Asako Kanezaki},
booktitle = {Proceedings of the 38th International Conference on Machine Learning},
pages = {12029--12039},
year = {2021},
editor = {Meila, Marina and Zhang, Tong},
volume = {139},
series = {Proceedings of Machine Learning Research},
month = {18--24 Jul},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v139/yonetani21a/yonetani21a.pdf},
url = {http://proceedings.mlr.press/v139/yonetani21a.html},
}
# arXiv version
@article{DBLP:journals/corr/abs-2009-07476,
author = {Ryo Yonetani and
Tatsunori Taniai and
Mohammadamin Barekatain and
Mai Nishimura and
Asako Kanezaki},
title = {Path Planning using Neural A* Search},
journal = {CoRR},
volume = {abs/2009.07476},
year = {2020},
url = {https://arxiv.org/abs/2009.07476},
archivePrefix = {arXiv},
eprint = {2009.07476},
timestamp = {Wed, 23 Sep 2020 15:51:46 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2009-07476.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}